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The history and enduring
contributions of planarians
to the study of animal regeneration
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Having an almost unlimited capacity to regenerate tissues lost to age and injury,
planarians have long fascinated naturalists. In the Western hemisphere alone,
their documented history spans more than 200 years. Planarians were described in
the early 19th century as being ‘immortal under the edge of the knife’, and initial
investigation of these remarkable animals was significantly influenced by studies
of regeneration in other organisms and from the flourishing field of experimental
embryology in the late 19th and early 20th centuries. This review strives to place
the study of planarian regeneration into a broader historical context by focusing
on the significance and evolution of knowledge in this field. It also synthesizes our
current molecular understanding of the mechanisms of planarian regeneration
uncovered since this animal’s relatively recent entrance into the molecular-genetic
age. © 2012 Wiley Periodicals, Inc.
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PLANARIANS AND THEIR HISTORICAL
CONTEXT

The study of regeneration has a rich, intertwined
history with experimental embryology. In the

17th century, naturalists contemplated two ancient
paradigms for thinking about embryology: preforma-
tionism versus epigenesis. Preformationism contended
that animals were already formed in miniature at
the time of conception and simply expanded in size
over the course of development. In contrast, epige-
nesis stated that animals were built piece by piece
during development, guided by some intrinsic infor-
mation housed in the undifferentiated embryonic cells.
The rediscovery of animal regeneration at the end
of the 1600s cast serious doubt upon the validity
of preformationism. As naturalists began gathering
more insights into both regeneration and embryonic
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development, epigenesis eventually took center stage
as one of the most important principles of biology.1

The earliest known description of animal regen-
eration came from Aristotle around 350 BCE. Among
other things, he described that the tails of lizards
regenerate.2 In 1686, Thévenot, Perrault, and Duver-
ney revived this finding.3 This rediscovery of regener-
ation created a wave of excitement, and 18th century
naturalists began experimenting on any animals they
could find to determine if this was a common phe-
nomenon across the tree of life. de Réaumur showed
that arthropods could lose appendages such as limbs
and subsequently regenerate them.4 Trembley sys-
tematically demonstrated that hydra, a member of
the cnidarian phylum, regenerates after transection.5

Bonnet proved that annelid worms regenerate,6 and
Spallanzani described the regenerative abilities in a
variety of invertebrates such as snails and vertebrates
like salamanders and frog tadpoles.7

The birth of the study of planarians is most
frequently associated with Pallas, who encountered
them while exploring the Ural mountains in the late
18th century. There, he observed that these animals
regenerate missing body parts after fissioning.8 How-
ever, other early reports of planarians exist. Trembley
described feeding pieces of planarians to hydra in
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his monograph in 1774.5 Müller described a num-
ber of planarian species in 1773, but erroneously
grouped them with the trematode genus Fasciola.9

Woodcut prints of land planarians can be found in
Japanese encyclopedias dating as far back as the 17th
century10,11 (Figure 1), while written descriptions of
the animals long precede that.12,13 In fact, the oldest
known reference to planarians comes from the Chi-
nese text Yu-Yang Tsa-Tsu written around 860 AD by
T’uan. He describes the animal ‘T’u-K’u’ (likely the
land planarian Bipalium), and hints at its regenera-
tive abilities by saying that it can ‘easily separate into
several pieces’ when touched.12–14

Over the course of the 19th century, more than
a dozen different European15–25 and American26–33

biologists—including Darwin himself—continued to
study these animals and demonstrated that the
robustness of regeneration was common across
planarian species. Indeed, in Dalyell’s eloquent words,
planarians appear to be ‘almost immortal under the
edge of the knife,’ making them tantalizing animals
for study.16

Work continued on planarians for the rest of
the 20th century, as it did in other animal models
of regeneration.34 However, in all fields, progress
toward a mechanistic understanding of regeneration
was hampered by an incomplete understanding of
basic cell biology and genetics, in addition to a
lack of tools for experimentation. Only recently have
significant advances in molecular biology, genetics,
and sequencing technologies reignited interest in
planarians and other regenerative organisms. Today
we are poised to tease apart the molecular mechanisms
of regeneration, and unlock the mysteries of this
biological phenomenon that have fascinated so many
for so long.

WHY STUDY REGENERATION
IN PLANARIANS?

Planarians Are Masters of Regeneration
Today’s popular model organisms were selected for
a simple reason: they are biological exaggerations.
Morgan selected the fruit fly and Sydney Brenner,
the nematode worm because their exaggerated
reproductive biology made them ideal for performing
forward genetic screens. Likewise, planarians are
ideal for regeneration studies because they undergo
amazing feats of restorative and physiological
regeneration.35

Planarians undergo restorative regeneration in
response to almost any type of injury. An upregulation
of cell proliferation forms a mass of unpigmented

(a)

(b)

FIGURE 1 | Ancient Japanese texts describe planarians and their
ability to fission. (a) Wood-print reprinted from the Japanese
encyclopedia Kinmô-Zui by Nakamura, 1666 (Reprinted from Ref 10).
Image depicts a striped land planarian (likely Bipalium). The caption
indicates that ‘it is very poisonous and similar to another soil insect
(nematode) previously described’. (Translation assistance provided by
Dr. Tamaki Suganuma, Nobuo Ueda, and Shigeki Watanabe.)
(b) Wood-print reprinted from the illustrated Japanese encyclopedia
Wakan Sansai-Zue by Terajima, 1713 (Reprinted from Ref 11). Image
depicts a striped land planarian (likely Bipalium) in the right column.
The vertical text is translated to read:

‘‘‘Doko’’ or ‘‘Toku’’. The animal has the shape of a Japanese belt in
general appearance and is without legs. It measures up to 12 to 15 cm
in length; a large specimen attains about 30 cm. The body is flattish in
shape as a leaf of leek. There are yellow and black folds on the dorsal
surface. The animal has a head shaped like a Japanese forceps. . .If the
animal is touched, fission may occur. . .′.13
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newly differentiating cells, called a blastema. From
this blastema emerges many of the tissues lost to
injury, producing a fully restored worm in as little as
1–2 weeks28,31 (Figure 3(a) and (b)). This restorative
response involves rebuilding anatomy de novo—a
process Morgan called ‘epimorphosis’. It also involves
remodeling the pre-existing tissues and integrating
them with the newly made anatomy so that the animal
regains its proper proportions and restores function
to its organs. Morgan termed this type of remodeling
‘morphallaxis’35 (Figure 3(c)).

In addition to restorative regeneration, pla-
narians display physiological regeneration, repairing
anatomy as it naturally ages. In the absence of an
injury, these animals constantly undergo impressive
levels of cell proliferation to replace old tissues. Like
many cnidarians, annelids, echinoderms, and ascid-
ians, planarians can maintain physiological regen-
eration for decades without losing the ability to
regenerate or developing cancer.36,37 This not only
makes planarians useful for asking questions about
regeneration. It also makes these long-lived animals
tantalizing subjects for aging research, which has so
far included studies of the mechanisms of planarian
telomere maintenance38 and the function of genes that
affect longevity in other organisms.39–41

Planarians Are Sufficiently Complex
in Anatomy and Behavior
Planarians are protostomes and members of the
Lophotrochozoan clade. They are triploblastic and
thus have tissues derived from all three germ layers
(ecto-, meso-, and endoderm). While they have simpler
body plans than vertebrate model systems, they have
long been recognized to have discrete organ systems
and behaviors amenable for regeneration studies
(Figure 2(a)).

Planarians eat (Supporting Information Video
S1) and defecate (Supporting Information Video S2)
through a muscular feeding tube, or pharynx, which
connects to the gut43–46 (Figure 2(b) and (c)). A
blind gut with one anterior branch and two poste-
rior branches occupies much of the body cavity47–49

(Figure 2(c)). The animals possess an organized ner-
vous system composed of two anterior cephalic
ganglia and two parallel nerve cords that run ven-
trally along the length of the body (Figure 2(c)). A
pair of dorsal photoreceptors is connected to the
nervous system by axons that make up the optic
chiasm50,51 (Figure 2(d)). They possess motile cilia on
their ventral epithelium that enables them to glide
across surfaces52–56 (Figure 2(e)). Their body plan
is peppered with protonephridia, organs that facil-
itate osmoregulation and may ultimately prove to

be homologous rather than analogous to the verte-
brate kidney57–59 (Figure 2(f)). While much work has
focused on regeneration in asexual planarians, sexual
strains also exist as cross-fertilizing hermaphrodites,
regenerating ovaries and testes after amputation or
starvation.60–64 Planarian tissues also have intricate
domains of molecularly discrete cell populations,
yielding a plethora of markers to assess wound
responses and general organization of the body plan65

(Figure 2(g)). Finally, these animals display complex
behaviors including negative phototaxis, fissioning in
response to stimuli like changes in population density,
and even cannibalism16–18,66–69 (Supporting Informa-
tion Video S3). Thus, planarian anatomy and behavior
provide a sufficiently complex palette for studying
regeneration.

An Expanding Molecular Toolkit
Planarian studies prior to the end of the 20th
century were plagued by a lack of cellular resolution.
Investigators relied principally upon basic histology,
electron microscopy, and the visualization of gross
anatomy under a transmitted light microscope to
assess the regenerative response. They had little means
of distinguishing cellular identity or tracing the lineage
and movement of cells over time. They also had few
ways to perturb the animals, and frequently resorted
to treating planarians with pharmacological agents
or toxins which had unknown mechanistic effects.
Ultimately, the lack of experimental tools hampered
the understanding of planarian biology.

Within the last two decades, our ability to
visualize planarian tissues has improved drastically.
Unlike Morgan and his inability to visualize
the cellular and molecular events underpinning
regeneration (Figure 3(a) and (b)), we can now
assess each step of the regenerative response with
extensive panels of markers. We can detect changes
in gene expression and protein function, yielding a
much sharper picture of the unfolding morphological
and cellular dynamics of regeneration.70–72 For
instance, it is possible to visualize the regeneration of
endodermally and ectodermally derived organ systems
like the gut and brain, respectively (Figure 3(c)).
Cellular activities that are not necessarily associated
with organogenesis can also be assessed, such as the
reestablishment of anterior domain identities after
amputation (Figure 3(d)).

In addition, the genome of the species Schmidtea
mediterranea has been sequenced,74 to which EST,
transcriptome, proteome, and small RNA datasets
can be mapped.75–87 Genome microarrays have
been generated to identify genes important for
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FIGURE 2 | Planarian anatomy is sufficiently complex for regeneration studies. (a) Two depictions of planarian anatomy adapted from Leuckart’s
zoological wall chart series entitled ‘Vermes,’ circa 1890.42 (image obtained from MBLWHOI Library, Rare Books Archive). (b) A live planarian
extruding its pharynx (arrowhead). Scale bar 200 μm. (All animals depicted in Figures 2–7 are the asexual strain of Schmidtea mediterranea unless
otherwise noted.) (c) Overlay of gut (blue, Smed-porcn-1), neurons (yellow, Smed-PC-2), axons, and pharynx (magenta, anti-α-tubulin antibody).
Scale bar 200 μm. (d) Left panel: Head of a live planarian. Photoreceptors are darkly pigmented. Right panels: A different specimen showing neurons
of the cephalic ganglia (blue, Smed-PC-2), photoreceptors, and commissural visual axons (red, anti-arrestin antibody; a kind gift of Dr Kiyokazu
Agata). Scale bars 200 μm. (E) Tufts of ventral cilia (yellow, anti-acetylated-tubulin antibody) projecting from epithelial cells (nuclei: magenta,
TOPRO-3) facilitate swimming. Image focused around opening to the pharynx cavity (M, mouth). Scale bar 50 μm. (F) Left panel: Protonephridia,
which compose the excretory system (Smed-innexin-10). Scale bar 200 μm. Right panel: Close up of tail tip of a different specimen. Confocal
maximum projection of protonephridial system, including flame cells (blue, anti-α-tubulin antibody), proximal tubules (magenta, Smed-innexin-10),
and distal tubules (green, Smed-CAVII-1). Scale bar 50 μm. (Images provided by Hanh Thi-Kim Vu.) (g) Markers labeling distinct body regions. Left to
right: anterior cells and distal tip of pharynx (Smed-sfrp-1), posterior cells (Smed-wnt11-2), body periphery (Smed-wnt5), and midline (Smed-slit-1).
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FIGURE 3 | Upon injury, planarians regenerate lost tissues,
re-establish scale and proportion, and maintain axial polarity.
(a) Morgan amputated an adult planarian (red dashed line) and
observed it regenerate missing anatomy (‘epimorphosis’) and
re-establish proper body proportions (‘morphallaxis’). (Modified from
the original as first published in Ref 33). (b) A live intact planarian was
amputated (white dashed line), and the regenerating tail fragment is
shown at 1, 4, and 7 dpa. Scale bar 200 μm. dpa: days post amputation.
(c) The cephalic ganglia (arrowheads), pharynx (yellow asterisk), and
anterior gut branch (arrow) regenerate by 7 dpa. An intact planarian
(left) was amputated (white dashed line) and regenerating tail
fragments were stained at timepoints indicated (right) for nervous
system, pharynx (green, anti-α-tubulin antibody) and gut
(Smed-porcn-1). Scale bars 200 μm. (Reprinted with permission from
Ref 73). (d) The A/P decision is made by 1 dpa, preceding tissue
regeneration and anatomical remodeling. Regenerating tail fragments
stained at timepoints indicated for marker of anterior cell identity
(Smed-sfrp-1). Scale bars 200 μm. hpa: hours post amputation.
(Reprinted with permission from Ref 73. Copyright 2010 Elsevier)

regeneration.59,88–91 High-throughput RNAi screens
can be performed to characterize gene function.92–94

Fluorescence activated cell sorting (FACS) is used to

identify and isolate discrete cell populations, which
subsequently can be used for such purposes as
single-cell gene profiling or functional transplanta-
tion studies.95–101 All of these tools, coupled with the
ability to perform lineage tracing using BrdU, have
opened the door for rigorous study of the molecular
mechanisms underlying planarian regeneration.102

PATTERNING THE PLANARIAN BODY
AXIS

Polarity Is Maintained during Regeneration
One of the earliest uses of the term ‘polarity’ in
reference to body plan regeneration can be found in the
work of Allman to describe the tubularian’s propensity
to regrow a head from anterior-facing wounds and
not posterior ones.103 The mechanisms that establish
and maintain polarity are fundamental questions
shared by the fields of regeneration and embryology.
How do cells know they are different from other
cells? How are these differences translated into
proper specification of the body axes and subsequent
organogenesis? How is polarity re-established in
the face of unexpected perturbations—whether that
perturbation is a blastomere ablation in an embryo or
an appendage amputation in an adult?

During regeneration, adult planarians maintain
the polarity of their body axes. A small piece of tissue
removed from the flank of the animal conserves the
original orientation of the anterior–posterior (A/P),
dorsal–ventral (D/V), and medial–lateral (M/L) axes28

(Figure 4(a)). Additional experiments from the ear-
lier part of the 20th century demonstrated that the
juxtaposition of tissues from different regions of the
animal—such as the transplantation of anterior tissue
to posterior regions—triggers abnormal regeneration,
including the formation of an ectopic body axis104,105

(Figure 4(b)). These results suggest that planarian tis-
sues possess some type of intrinsic positional and
polarity information. During regeneration, this start-
ing information must be read and interpreted correctly
such that the proper structures are made in the right
location. Determining how polarity is re-specified and
maintained is critical for understanding the mech-
anisms of animal regeneration, and we are now
discovering that some of the genetic toolkit used to
establish polarity in an embryo may also play similar
roles in maintaining polarity during regeneration.

Historical Views of Regeneration Polarity
Over the centuries, investigators have proposed
diverse mechanisms to explain the phenomenon
of polarity. Some of these models had distinctly
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FIGURE 4 | Anterior–posterior polarity. (a) Randolph showed that a small piece of tissue amputated from the flank of the body (left, red box)
maintains axial polarity during regeneration (right). (Reprinted with permission from Ref 28). (b) Transplanting tissue from the anterior region of one
planarian to a posterior region of another (left) results in outgrowth of a new body axis (right). (Reprinted with permission from Ref 104).(c) Thin
transverse amputations (left, red dashed lines) cause heteromorphic regeneration, resulting in double-headed (top) or double-tailed (bottom)
regenerates. (Modified from the original as first published in Ref 106). (d) RNAi strategy employed for Figures 4–6. Animals were (1) fed dsRNA to
knockdown a gene of interest, (2) amputated, and (3) allowed to regenerate. (e) Wnt/β-catenin signaling controls A/P polarity. Live images and fixed
animals stained for the nervous system (Smed-PC-2), anterior cell identity (Smed-sfrp-1), and posterior cell identities (Smed-fz-4). Controls regenerate
normally. Smed-β-catenin-1(RNAi) causes a head to regenerate from posterior blastemas. Smed-APC-1(RNAi) causes a tail to regenerate from
anterior blastemas. Scale bars 200 μm. (Live images provided by Dr Kyle A. Gurley and Dr Jochen C. Rink.)
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preformationist undertones. Bonnet hypothesized that
‘germs’ exist in the earthworm that contain a fully
formed miniature head or tail. Upon amputation,
fluid flow transports ‘head germs’ anteriorly and
‘tail germs’ posteriorly so that a head and tail
sprout at the proper locations.6,107 Weismann, a
declared preformationist, extended his theory of the
germ–plasm to explain regeneration. He proposed that
preformed cells containing an ‘idioplasm’ facilitate the
reconstitution of the limbs of salamanders and newts.
‘Idioplasm’ is organic material that predetermines the
reconstitution of the limb, regardless of cues from the
environment or the regenerating appendage. As cells
divide, portions of the nuclear ‘idioplasm’ are lost, and
the division progeny are left with only enough ‘ids’ to
produce the next most distal cells in the limb. Thus,
this predetermined regeneration program ensures that
distal structures are never regenerated before more
proximal ones.108

Other hypotheses regarding regeneration polar-
ity were more grounded in the ideals of epigenesis,
proposing that polarity came not from preformed
germs or ‘ids,’ but instead developed progressively
out of some instructive cues intrinsic to the cells and
tissues. Bardeen argued that the pre-existing anatomy
of a planarian exerts mechanical forces that constrain
the location in which new anatomy can physically
fit. He also argued that the nervous system was key
in dictating polarity.66,109 Pflüger proposed that the
chemical composition of the pre-existing tissue’s cut
surface establishes polarity. Each tissue laid down
during regeneration provides a chemical signal that
instructs the fate of the next layer laid down on top
of it, and regeneration thus proceeds in a proximal
to distal direction.110 Child thought that gradients
of metabolic activity guide regeneration. He believed
that anterior tissues have higher metabolic rates and,
thus, display ‘physiological dominance’ over more
posterior tissues, establishing A/P polarity early on
in regeneration.111 Brøndsted, heavily influenced by
Child, proposed that unknown effectors establish A/P
polarity through a time-graded regeneration field. This
field exposes ‘high points’ in a planarian blastema
where regeneration of the head occurs faster and
more vigorously than in other regions, subsequently
releasing factors that inhibit head formation in more
posterior areas.112,113 (For additional examples of
regeneration polarity theories, see Refs 4,114–118.)

While most of these hypotheses have been
proven insufficient to fully explain regeneration
polarity or the defects resulting from experimental
manipulation, Morgan’s theory has best withstood
the test of time. Based upon meticulously documented
regeneration experiments performed in a wide variety

of animals, Morgan observed that ‘something in the
piece itself determines that a head shall develop at
the anterior cut surface and a tail at the posterior cut
surface. This ‘‘something’’ is what we call polarity.’119

He hypothesized that polarity results from some type
of physical and/or chemical gradient along the body
axes.120–122

A/P Polarity in Planarians
Early attempts to better understand axial polarity
in planarians centered around perturbing regenera-
tion through surgical means. The abnormal, surgically
produced regenerates were referred to as heteromor-
phoses. Before the use of chemicals, irradiation, elec-
tric fields, or RNAi, heteromorphoses provided key
insights from which hypotheses could be made about
the mechanisms underpinning regeneration. Hetero-
morphoses of the A/P axis were described early on in
studies of planarian regeneration, since the head was
an easily recognized structure. Most notably, Morgan
observed that transverse amputations producing short
cross-pieces frequently regenerated bipolar heads or
tails31,33,106 (Figure 4(c)). Coupled with similar regen-
eration defects from experiments on earthworms and
tubularians, Morgan suggested that a regenerate might
interpret a gradient of chemical or physical informa-
tion along the body axis to maintain proper axial
polarity. Very thin slices of tissue could have too
shallow of a gradient to be deciphered, causing the
production of a head from posterior wounds by
default.

RNAi screens have uncovered phenotypes reca-
pitulating Morgan’s double head and double tail
defects, lending support to his gradient hypothesis
(Figure 4(d)). The Wnt/β-catenin pathway, which is
involved in many developmental processes across
metazoa including establishing polarity along the
primary axis,123,124 is required for A/P polarity
in planarians.125,126 Knockdown of the pathway’s
core transcription factor Smed-β-catenin-1 results in
anteriorization of the body axis, causing a head
to regenerate from a posterior wound instead of
a tail (Figure 4(e)). This anteriorized phenotype
is also produced by knockdown of upstream lig-
ands Dj/Smed-wnt1 and Smed-wnt11-5, receptor-
associated agonists Smed-dvl-1 and Smed-dvl-2, and
the transmembrane protein required for secretion of
WNTs Smed-evi/wntless. In contrast, upregulation
of β-CATENIN-1 activity by knockdown of such
inhibitors as Smed-APC-1, Smed-notum, Smed-axinA,
and Smed-axinB elicits the opposite phenotype in
which tails regenerate from anterior wounds125–132

(Figure 4(e)). These results suggest that during regen-
eration, graded levels of β-CATENIN activity along
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the body plan regulate the anterior-versus-posterior
fate choice. β-CATENIN activity must be sufficiently
high in posterior blastemas to facilitate tail regen-
eration and sufficiently low in anterior blastemas
to produce a head. Likewise, this signaling sys-
tem must be acting during physiological regenera-
tion, as knockdown of Smed-β-catenin-1 anteriorizes
uninjured animals too.125–127 Whether there is a
posterior-to-anterior gradient of β-CATENIN nuclear
localization is unknown. However, numerous poste-
riorly expressed Wnt ligands and anteriorly expressed
Wnt inhibitors suggest that there may indeed be such
an activity gradient.73,125,126,128,129,131

The Hedgehog pathway, well characterized
during the development of many animals,133 is also
important for A/P polarity in planarians. RNAi of
pathway activators Dj/Smed-hh, Dj/Smed-gli-1, and
Smed-smo decreases Hh signaling and results in loss
of posterior regeneration. In contrast to this ‘tailless’
phenotype, increased Hh signaling through RNAi
of pathway inhibitors Dj/Smed-ptc and Dj/Smed-
sufu causes defects in anterior regeneration. In these
animals, a tail regenerates instead of a head at anterior
wounds. Thus, high levels of Hh signaling are required
to properly specify posterior tissues, while lower
levels are required for specifying anterior tissues.
Furthermore, the Hh pathway may act upstream of the
Wnt/β-catenin pathway by modulating the expression
of Dj/Smed-wnt1, which likely signals through
β-CATENIN to specify posterior fates.52,128,130,134,135

Additional parallel or convergent pathways
are known to participate in the establishment
and maintenance of A/P polarity. Simultaneous
knockdown of putative gap junctions Smed-innexin-
5, -12, and -13 produces double heads.136 RNAi
of the LIM homeobox transcription factor Djislet
causes a tailless phenotype.131 Knockdown of the
TALE class homeobox transcription factor Smed-
prep causes cyclopic and headless phenotypes.137

Graded membrane voltage, based at least in part on
high intracellular calcium levels in anterior wounds,
also plays a role in establishing A/P polarity in
planarians.138–142 At this point, however, it is unclear
how all these collective signals are integrated to
properly reestablish the A/P axis.

D/V Polarity in Planarians
As in other regenerative animals, an amputation in a
planarian brings dorsal and ventral tissues into close
contact at the wound site.143 Grafting experiments
in animals including newts,144,145 arthropods,146 and
annelids147 have suggested that signaling between
tissues from different regions of the dorsoventral

(D/V) axis—such as the interaction induced by wound
closure—might be an early trigger for regeneration.
Classical planarian experiments have also supported
this idea. In particular, Santos grafted plugs of
planarian tissue into a host in either normal D/V
orientation or inverted orientation (Figure 5(a)). In
the former case, the tissue healed and the animal
appeared normal. In the latter case, a blastema formed
at the interface between the graft and host tissues and
large cup-shaped protrusions emerged at the graft
site. In at least one case, Santos even observed an
ectopic planarian developing from the graft with
inverted D/V orientation to the host’s body axis
(Figure 5(a)). This suggested that the graft not only
retained its original D/V polarity after transplantation,
but the juxtaposition of dorsal and ventral tissues
somehow triggered the formation of a new body
axis.104,105

Seventy years after Santos’ initial observations,
investigators are revisiting his experiments with
modern tools. Histological analyses and expression
studies show that Santos’ inverted transplants indeed
maintain their original D/V polarity after grafting. In
addition, the boundary between the host and graft
tissues of inverted transplants ectopically expresses
a body edge marker, while noninverted control
transplants do not.148 While future studies are needed
to determine whether an ectopic body axis is truly
forming from these protrusions and how this is
accomplished, these results do suggest that the closer
positioning of dorsal and ventral tissues after an injury
and wound healing might be an important aspect
of the regenerative response of planarians, helping
promote blastema formation and specification of a
new body edge.149

Recent RNAi screens have uncovered numerous
genes important in establishing and maintaining D/V
polarity in planarians. So far, all genes identified in
these screens are components of the BMP pathway,
a branch of the TGF-β signal transduction cascade,
which has a conserved role in organizing the D/V
axis in diverse metazoans.124 Reduction of BMP
signaling by RNAi of DjBMP/Smed-bmp4, Smed-
smad1, Smed-smad4, Smed-admp, and Smed-noggin-
like-8 ventralizes animals during both restorative and
physiological regeneration (Figure 5(b)). Collectively,
these ventralized defects include a dorsal duplication
of the brain and ventral nerve cords, ectopic dorsal
expression of ventral markers, and growth of dorsal
cilia that enable the animals to swim in an inverted
fashion on their dorsal side.94,150–154 Likewise,
increasing BMP signaling through knockdown of
putative inhibitors Smed-noggin-1 and Smed-noggin-
2 causes the opposite dorsalized phenotype in which
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200 μm.

animals ectopically express dorsal markers on their
ventral side.153,154

In addition to identifying a molecular foothold
for studying the regulation of the D/V axis during
planarian regeneration, these defects hint that
an interaction between dorsal and ventral tissues
juxtaposed during wound closure may indeed be
important for regeneration, as Santos proposed
from his grafting experiments104,105 (Figure 5(a)).
All ventralized RNAi phenotypes examined thus far
display reduced or absent blastemas (Figure 5(b) and
(c)) and a loss of expression of body edge markers
at the wound site. Perhaps critical signaling events

between properly specified dorsal and ventral tissues
organize or permit downstream events in regeneration.
While such an interaction could explain the BMP
pathway blastema phenotype and the formation of a
second body axis observed by Santos, these spatially
introduced signaling events have yet to be confirmed.

M/L Polarity in Planarians
Randolph and Morgan both described a variety of
perturbations in M/L regeneration.28,31,33,60 One of
the most striking experiments involved a simple
midline incision in either the anterior or posterior
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region of the animal. This incision did not fully cut
the animals in half, and the wounds were allowed
to heal back together. While some animals simply
healed, this midline incision triggered a duplication of
the M/L axis in others. These animals became wider
and sprouted ectopic pharynges and photoreceptors
lateral to the pre-existing ones (Figure 6(a) and (b)).
While this experiment has yet to be revisited with
molecular markers, their results suggest that the M/L
axis is tightly regulated during regeneration. Simple
wounding may cause the animal to reassess the
integrity of the M/L axis, and trigger cells to take
on different positional identities as if the animal had
been cut through and through.

RNAi screens have identified numerous genes
important for regulating anatomical patterning with
respect to the M/L axis in planarians. This includes
the Slit/Netrin repulsion–attraction signaling system.
Among other developmental processes, SLIT and
NETRIN ligands cooperatively regulate the migration
of axonal projections across the midline, with SLIT
repulsing axons as NETRIN attracts them.155,156

Similarly, Dj/Smed-slit-1 is required to maintain the
planarian midline during restorative and physiological
regeneration. RNAi knockdown causes a collapse
of lateral tissues toward the midline, including
the cephalic ganglia, nerve cords, photoreceptors,
optic chiasm, and posterior gut branches157,158

(Figure 6(c)). While it is curious that knockdown
of the SLIT receptor, Dj/Smed-roboA, does not
fully recapitulate these midline defects, it does
cause aberrant crossing and fasciculation of the
axons of the optic chiasm, in addition to a lateral
displacement of the ganglia and reduction of the
anterior commissure. This suggests a defect in M/L
patterning.158,159 In contrast to the slit-1(RNAi)
phenotype, the most penetrant defects associated with
knockdown of Netrin signaling via Smed-netR(RNAi)
and Smed-netrin2(RNAi) are a lateral expansion of the
cephalic ganglia, reduction in anterior commissure,
and disorganization of the axons of the ventral nerve
cords.160 These contrasting defects in M/L patterning,
coupled with simultaneous double RNAi for Dugesia
japonica Slit-Netrin signaling components,158 suggest
a Slit-Netrin signaling synergy may help direct various
events in M/L patterning.

The Wnt pathway is also involved in midline
patterning in planarians. Smed-wnt11-2(RNAi) causes
a failed extension of Smed-slit-1 cells at the tip of the
regenerated tail, resulting in abnormal looping of the
ventral nerve cords and inappropriate midline crossing
of the posterior gut branches.73,128 In contrast,
knockdown of Smed-wnt5 yields a phenotype very
similar to the defects observed by Randolph and
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(Modified from the original as first published in Ref 28). (b) Live images
14 days after the midline incision depicted in 6A. Although the tissue
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Copyright 2010 Elsevier)
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Morgan after midline incisions: a lateral expansion
of medial structures toward the body periphery,
in addition to the growth of lateral, ectopic
pharynges56,73,128 (Figure 6(d)). In light of these
phenotypes, the M/L axis must be as tightly regulated
during planarian regeneration and homeostasis as the
A/P and D/V axes are.

Finally, the TGF-β pathway is important not
just for D/V axis organization, but also M/L orga-
nization. Smed-bmp4 (which is expressed along the
dorsal midline of the adult planarian) is upregu-
lated at the wound edge during lateral regenera-
tion. RNAi of some components of this pathway
(Smed-bmp4, Smedolloid-1, and Smed-smad4) com-
pletely abolishes regeneration from amputations that
bisect the animals down the midline.152 RNAi of
TGF-β pathway members that cause ventralization
results in conspicuous midline indentations in anterior
and posterior blastemas, suggesting that the midline
does not regenerate properly94,150–154 (Figure 5(c)).
Furthermore, collapse of the nervous system and

regeneration of supernumerary photoreceptors at the
midline, as well as lateral ectopic pharynges are among
other midline abnormalities reported thus far.151 The
perturbation of the M/L axis was molecularly veri-
fied in Smed-admp(RNAi) animals, which ectopically
express the midline marker Smed-slit-1 at the body
periphery,153 as well as in Smed-smad4(RNAi) regen-
erates (Figure 5(c), see Table 1 for summary of all
polarity phenotypes described).

These results leave us with many questions.
Does regeneration require establishment of one body
axis before another can be specified? Or can an
axis be specified independently of the other two,
as in the case of zebrafish development?161 Which
cells provide polarity information and which cells
interpret these cues? Are there organizing centers
for body axis polarity analogous to those identi-
fied during embryogenesis? And how are all three
axes integrated during regeneration? In order to
understand how these animals regenerate in three
dimensions, studies must focus on the timing of axis

TABLE 1 Summary of Body Axis Patterning Phenotypes

Data are summarized for A/P, D/V, and M/L patterning defects. Dorsalization and ventralization refers to ectopic expression of axis markers or regeneration of
ectopic anatomy. Midline defects refer to any ectopic or missing anatomy at the midline. These include misguidance of the visual axons that cross the midline;
expansion or collapse of midline structures like the brain, nerve cords, photoreceptors, or pharynx; loss of neural connectivity at the midline; ectopic expression
of midline or body periphery markers; reduction in lateral regeneration, or midline indentations in the blastema. (See text for references and additional details
for each phenotype.)
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specification and the manner in which these axis deci-
sions affect signaling cascades required for subsequent
organogenesis.49,58,59,64,162,163

NEOBLASTS: CELLULAR AGENTS
OF PLANARIAN REGENERATION

A Century-Long Debate Regarding
the Cellular Agents of Regeneration
After the amazing regenerative abilities of planarians
were discovered, the search for the cellular source
of this phenomenon ensued. Surprisingly, many key
insights predate the use of the molecular-genetic tools
recently applied to study planarians.

The histological analysis of planarian tissues
under the light microscope in the late 19th century
allowed biologists to identify a subset of parenchy-
mal cells that undergo cell division, as evidenced
by the presence of mitotic figures. This proliferat-
ing population of 6–12 μm ovoid-shaped cells pos-
sesses large decondensed nuclei and scant, basophilic
cytoplasm (Figure 7(a)). These cells were correctly
identified as the main source of new tissues.23–25,30

Over the years, many names were ascribed to these
cells, including verästelten bindegewebszellen (branch-
ing connective tissue cells),164 bildungszellen (forming
cells),23 stammzellen (stem cells),24 stoffträger (sup-
port material),165 ersatzzellen (replacement cells),30

cellules libres du parenchyme (free cells of the
parenchyma),166 regenerationszellen (regeneration
cells),167 and wanderzellen (migratory cells).168 Even-
tually, the term neoblast permanently designated these
cells, a name applied by Randolph to describe the
cells responsible for regeneration in the earthworm
Lumbriculus.169–171

Biologists initially tried to integrate what they
knew about embryogenesis with what they were
learning about neoblast-based regeneration. At first,
these cells were referred to as an ‘embryonic stock,’
likened to blastomeres that persisted into adulthood
to replenish injured or aging tissues.116,173 Keller
even suggested that neoblasts comprise a previously
unidentified fourth germ layer.24 Soon, however, some
biologists challenged the idea that neoblasts were a
persistent undifferentiated pool of cells, and suggested
instead that they were derived from differentiated
tissues that had dedifferentiated or transdifferenti-
ated—a phenomenon termed metaplasia.174–177 Still
others thought that planarian regeneration and tissue
homeostasis might involve a combination of these two
phenomena.109,178–181

For much of the 20th century, the source of
a planarian’s regenerative abilities created a heated

debate, especially as new scientific tools facilitated
more sophisticated analyses. Some groups tried to
specifically label differentiated cells versus neoblasts
to determine what tissues they contributed to.
Attempts were also made to visualize regenerated
tissues using improved histochemical techniques.
These experiments led a few researchers to believe they
had observed various cell types dedifferentiate into
neoblasts.182,183 Others took advantage of differences
in ploidy between the somatic and germline tissues,
and reported that the germline could dedifferentiate
or transdifferentiate into tissues such as muscle.184

Some even argued that since dedifferentiation was the
mechanism of regeneration identified in most other
animals studied thus far, planarian biology must work
the same way.185

However, one tool proved key to properly
addressing this question. In the first half of the
20th century, it was demonstrated that ionizing
radiation primarily kills neoblasts, causing the animals
to lose the ability to undergo physiological and
restorative regeneration186,187 (Figure 7(c)–(e)). This
simple manipulation suggested that metaplasia might
not play a major role in regeneration, as the animals
died even though the differentiated tissues appeared
to be intact. To further test this, Wolff and Dubois
used a lead block to shield portions of planarians
at different positions along the A/P axis, resulting
in the destruction of all neoblasts not covered by
the shield. Subsequently, they amputated the animals
and demonstrated that the length of time required
for blastema formation was proportional to the
distance of the lead shield from the wound.171,187

These results suggested that the surviving neoblasts
migrated to the wound to facilitate regeneration,
as opposed to the dedifferentiation of local
tissues.

Fueled by improvements in cell labeling
methods, cell culture, grafting techniques and
microscopy, additional evidence mounted in support
of neoblasts being collectively totipotent migratory
stem cells.188–194 Of note, Baguñà and colleagues
took advantage of two different strains of Schmidtea
mediterranea to identify the source of regenerated
tissues. One of these strains is sexual while the other is
asexual, and they can be distinguished at the cellular
level by a distinct chromosomal translocation. Cell
fractions enriched for either neoblasts or differentiated
cells were isolated by serial filtration from sexual
animals and injected into irradiated asexuals and
vice versa. In both cases, only the neoblast-enriched
fraction rescued irradiated animals. Furthermore, the
host took on the sexuality and karyotype of the
animal from which the cell fractions were isolated.195
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Coupled with the observation that dividing cells
migrate out of unirradiated tissue grafts into irradiated
host tissues,196–198 these results strongly suggested
that neoblasts are a collectively totipotent, migratory
stem cell population.

Modern Tools Demonstrate that Neoblasts
Are Collectively Totipotent Stem Cells
In an effort to pinpoint the cellular source of regener-
ated tissues using modern molecular tools, early efforts
focused on identifying genetic markers for neoblasts
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(Figure 7(b)). These efforts have included cloning can-
didate stem cell and proliferation-dependent genes,
generating EST libraries of regenerating animals, and
testing antibodies against conserved proliferation-
dependent histone modifications and cell cycle
regulators.45,71,96,199–205 Adaptation of FACS proto-
cols enabled profiling and isolation of two side popu-
lations of cells mainly composed of neoblasts (termed
‘X1s’) and a mixture of neoblasts and their recent divi-
sion progeny (termed ‘X2s’).97 Also, after 35 years of
attempts to incorporate modified thymidine analogs
into proliferating neoblasts, BrdU was successfully
optimized for use in planarians, facilitating the tracing
of neoblasts and their division progeny.102,206,207 Fur-
thermore, the sequencing of the planarian genome74

led to the development of microarrays to exam-
ine global gene expression changes after ablation of
neoblasts by irradiation. These microarrays not only
identified genes that define a molecular ‘signature’
for neoblasts.89 They also revealed a number of cate-
gories of genes that disappear at different timepoints
after irradiation and have distinct distributions of
expression in the planarian body plan. By performing
BrdU tracing and co-localization studies with neoblast
markers, it was shown that these genes are actually
markers for lineages of differentiating neoblasts.90

The ability to sort, label, and trace neoblasts and
their division progeny made possible an impressive
series of experiments that have put the debate about
neoblasts’ contribution to regeneration to rest. A
single transplanted neoblast—termed a clonogenic
neoblast (cNeoblast) for its ability to generate colonies
of cells—has been shown sufficient to rescue a lethally
irradiated planarian. cNeoblasts display extensive
pluripotency, and can differentiate into all of the
cell types in the animal, except possibly the germline.
Furthermore, BrdU labeling and strain-specific SNPs
used to discern tissues derived from the transplanted
cNeoblast versus those of the host suggest that
dedifferentiation is unlikely to contribute significantly
to planarian regeneration.101

Neoblasts and Their Division Progeny Are a
Heterogeneous Population
Historically, neoblasts were characterized by their
morphology alone (Figure 7(a)). As a result, all
neoblasts seemed roughly equivalent, with the
exception that slight differences in cell shape could be
observed.208 However, modern studies demonstrate
significant molecular heterogeneity amongst neoblasts
and neoblast progeny. This suggests that while some
neoblasts may be pluripotent, there could be subsets
of neoblasts that are lineage-restricted and able to
differentiate into only certain cell types.

Dj/Smed-nanos provided the first molecular
hints of neoblast heterogeneity. In asexual pla-
narians, it is expressed in only a subset of
neoblasts.62–64,100,209 Subsequently, single-cell PCR,
immuno-EM, and in situ hybridization studies
showed that neoblasts express various combina-
tions of the canonical neoblast markers, in addi-
tion to genes normally associated with tissue-specific
differentiation.59,100,101,163,209,210 Even a number of
the neoblast progeny markers identified by microarray
do not colocalize extensively, suggesting a diversity of
progeny lineages.101

Finally, the classical observation that neoblasts
display subtle diversity in morphology has been con-
firmed with improved means of isolating these cells.211

Recent functional data suggest that neoblast morphol-
ogy might indeed be indicative of heterogeneity in the
population. Single cNeoblasts possessing a distinct
membrane protrusion produced 75% of all rescue
events when transplanted to an irradiated host. How-
ever, since the rate of rescue was quite low, with only
7 out of 130 injections successfully grafting, it is possi-
ble that many cells expressing the pan-neoblast marker
Smed-piwi-1 might actually be a diverse population
of multipotent cells.101 It is currently unclear whether
this molecular and morphological heterogeneity sim-
ply results from lineage restriction as pluripotent
neoblasts differentiate, or whether there are perma-
nent subpopulations of neoblasts that are restricted in
potential.

Neoblasts Cycle Rapidly, Migrate, and
Proliferate in Response to Injury
Classical descriptions of the behavior of neoblasts as a
cell population are being re-examined with improved
resolution and accuracy. For many decades, analysis
of cell division in planarians was based on scoring
mitotic figures in serial histological sections.212 With
the demonstration that BrdU could be incorporated
by neoblasts in 2000,102 the door opened for detailed
analyses of the planarian cell cycle. We now know
from continuous labeling with BrdU that around 20%
of all planarian cells are cycling neoblasts, coming in
at the lower end of classical estimates based on cell
macerations.99,213 Nearly all neoblasts enter S-phase
and can be labeled with BrdU within 2–3 days of con-
tinuous exposure, suggesting that a large population
of slow-cycling or G2-arrested neoblasts is unlikely to
exist, as originally proposed.99,102,214 The length of
G2 has been estimated at approximately 6 h and the
average cell cycle length is around 21 h.99,102 In addi-
tion, changes in proliferation due to nutritional state
were described classically, and it has been confirmed
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that a large proliferative burst 12–72 h after feeding
indeed corresponds with animal growth.99,214,215 The
basis of degrowth during starvation, however, is still
debated. It may result from a decrease in neoblast pro-
liferation, an increase in cell death of neoblast division
progeny, or some combination of the two.215–217

Recent work has confirmed and expanded upon
older descriptions of the temporospatial dynamics
of neoblast proliferation.218 It now seems that the
regenerative response can be divided into two dis-
tinct mitotic phases. During the first phase, neoblasts
initiate a global burst in proliferation within 6 h
of any type of amputation or wound. The second
burst requires the removal of tissue and is concen-
trated near the blastema, peaking around 48–72 hours
post amputation (hpa)219 (Figure 7(f)). Neoblasts can
migrate as they differentiate and, in accordance with
classical observations, they stop dividing before enter-
ing the blastema.90,102,219,220 Finally, there is evidence
supporting classical hypotheses that a signal emanat-
ing from the wound may trigger proliferation, as the
initial mitotic increase seems to progress away from
the wound in a wave-like fashion.219,221

With this expanding toolkit and an improved
understanding of the dynamics of neoblasts, we can
now begin to identify the genes that regulate neoblast
self-renewal and differentiation. While it is possible
that conserved cell cycle regulators and pluripotency
genes play similar roles in neoblasts as they do
in other stem cell systems, it is equally likely that
novel mechanisms for regulation of neoblasts may be
discovered. Already, we are learning that even the
most fundamental aspects of planarian cell division
are surprisingly unique. Planarians, for instance, are
the first animals identified that do not seem to require
a centrosome for cell division at any point in their
life history.222 It is possible that such fundamental
differences in regulation of cell division might be key
to understanding why planarians have exceptionally
robust regenerative abilities.

Many Genes Required for Neoblast
Function Have Been Identified
RNAi of genes from microarray experiments, expres-
sion profiling, EST libraries, and candidate ortholog
searches of the planarian genome have already iden-
tified close to 200 genes whose phenotypes suggest
defects in neoblast self-renewal and/or differentiation
(see Table 2 for references). These phenotypes include
reduced or absent blastemas, ventral curling, tissue
regression, and lysis. A subset of these genes have
been characterized in detail (Table 2).

While most of the phenotypes examined ulti-
mately abolish proliferation and deplete neoblasts, an

examination of the earlier stages of the phenotype
progression reveals that neoblasts can be perturbed
in numerous ways. First, neoblast self-renewal can
be abrogated, as evidenced by a variety of pheno-
types that display a decrease in proliferation and
number of neoblasts soon after RNAi administra-
tion. Second, neoblasts can be disrupted at the level
of differentiation. For instance, Smed-piwi-2(RNAi)
does not affect neoblast numbers, their migratory
ability, or their proliferative response after injury.
Instead, differentiation is perturbed, as evidenced by
the lack of regenerated tissues and the abnormal
morphology of neoblast progeny that incorporate
into the epithelium during homeostasis.96,223 Addi-
tional examples of differentiation defects include
Smed-p53(RNAi), Smed-CHD4(RNAi), and Smed-
PTEN-1/2(RNAi). Among other abnormalities, RNAi
of these genes seems to stall differentiation, causing an
accumulation of neoblasts at the expense of postmi-
totic progeny.224,227,229 Lastly, the spatial distribution
of proliferating neoblasts can be disrupted, as it is after
RNAi of Smed-egfr-3 or administration of a putative
ERK inhibitor.232,234

THE EMERGING ROLE OF
DIFFERENTIATED TISSUES IN
REGENERATION

The regeneration field has focused much of its efforts
on the study of stem cells proper. The role of differ-
entiated tissues has been appreciated mostly within
the context of a cellular microenvironment known as
a niche, which protects and maintains stem cells.243

Considering that planarian regeneration requires not
only local restoration of missing tissues, but also a
simultaneous reproportioning of the entire body plan,
it stands to reason that differentiated tissues may play
important roles in regeneration on scales larger than
what has been previously described for a stem cell
niche.

Historically, the function of differentiated tis-
sues during planarian regeneration has been largely
dismissed as secondary to the action of neoblasts.
Brøndsted, for instance, argued that neoblasts and
the blastema they generate provide inductive cues
to establish axial polarity in the rest of the pre-
existing tissues.244 Likewise, Betchaku’s cell culture
experiments led him to view the fixed parenchymal
cells as merely a vehicle for transporting neoblasts
to the wound site so they can mount a regenerative
response.245 In the 1980s, the importance of differ-
entiated tissues in directing neoblast differentiation
was proposed.197 However, only recently have the
molecular tools become available to test this idea in
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TABLE 2 Summary of Neoblast Dysfunction Phenotypes

All phenotypes characterized that cause a loss or reduction in blastema formation (not associated with a known polarity defect) and/or ventral curling and lysis
are listed in alphabetical order for each species.39–41,57,84,87,90,94,96,203,205,209,217,223–242 Reported data regarding numbers of neoblasts, cell proliferation
based on Phospho-Histone H3 (Ser10) staining, expression of early and late neoblast progeny markers,90 results from clonogenic expansion assays,240 and
miscellaneous phenotype data are included.
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a background completely devoid of neoblasts. These
experiments have revealed a striking plasticity of the
differentiated tissues during regeneration that occurs
on a body-wide scale.

After irradiation ablates neoblasts and depletes
their recent division progeny, the animals cannot
regenerate new tissues. However, they can still
undergo normal transcriptional responses after ampu-
tation. For example, in the complete absence of
neoblasts, the differentiated tissues upregulate expres-
sion of early wound-response genes, in addition to
re-specifying the A/P axis within 1 day post ampu-
tation (dpa).73,134,152,232,246 Further examination of
cell death dynamics reveals that two distinct waves of
apoptosis occur within 4 hpa and 3 dpa. Surprisingly,
the amount of apoptosis measured by TUNEL positive
nuclei is normal in the absence of neoblasts, meaning
that the cell death required for proper tissue remod-
eling occurs independently of stem cells.247 Finally,
it has been shown that the differentiated tissues in
irradiated animals can dynamically modify body-wide
transcriptional output for at least four days after an
amputation, as evidenced by the oscillation of Smed-
wnt11-5 expression across the A/P axis in irradiated
tail fragments. It is only after 4 dpa that obvious
defects in the expression of this gene become apparent,
suggesting that the differentiated tissues may eventu-
ally need to integrate their new positional identity with
the regenerated anatomy or neoblasts after a certain
point in time.73,134 While it is still unknown whether
a niche for neoblasts exists, neoblasts and their local
microenvironment are likely not the only elements
required to understand planarian regeneration. Some-
thing about the nature of the pre-existing differenti-
ated tissues as a whole could be an important factor
in determining to what extent an animal—whether it
be a planarian or a human—can regenerate.

LOOKING TO THE FUTURE

After centuries of fascination with planarians, their
regenerative abilities have transformed from a curios-
ity ultimately deemed intractable for detailed study by
Morgan to an established animal model of regenera-
tion. If classical biologists could have peered into the
future, they would probably have been impressed by
the amount of knowledge generated in just the past
15 years. Topping this list of accomplishments, it was
confirmed that a pool of pluripotent neoblasts act as
stem cells to replenish missing tissues. Numerous genes
important for neoblast self-renewal and differentiation
have been identified, and the first markers of neoblast
lineages have been described. The molecular princi-
ples underlying axial polarity and organogenesis are

already being teased out. In addition, the surprisingly
dynamic behavior of whole tissues devoid of neoblasts
is challenging us to reassess a stem cell-centric phi-
losophy of regeneration. These results indicate that
instead of acting only as a local niche, differentiated
tissues may provide a macroenvironment capable of
initiating wound responses, specifying axial polar-
ity, and integrating global positional information that
direct the subsequent differentiation of neoblasts. Of
course, much still remains to be learned about these
fascinating organisms.

From the top down, there are many facets of pla-
narian regeneration biology to be elucidated. At the
highest level, the rapid changes in transcriptional out-
put observed after amputation or wounding suggest
that the chromatin landscape and access to genomic
promoters must be tightly coordinated. Chromatin
dynamics will likely play key roles in these global tran-
scriptional responses as the cells of the animal reassess
positional information and facilitate the proper differ-
entiation of neoblast progeny. Transcription factors
and the targets they regulate in response to injury
should also be studied so that gene regulatory net-
works for regeneration of specific tissues can be made
to integrate the large body of functional data that will
undoubtedly be generated. Additionally, increased cel-
lular resolution will be required to study the effects of
genes that undoubtedly have diverse temporospatial
roles during physiological and restorative regenera-
tion. Tools must be developed for indelibly labeling
cells in vivo for fate mapping and live imaging stud-
ies. Single-cell transcriptional profiling, in addition to
analysis of post-transcriptional and post-translational
modifications occurring shortly after injury will also
be key to teasing apart the molecular tapestry under-
lying regeneration.

By using this knowledge base, we can begin
exploring how the mechanisms of regeneration for-
mally compare to planarian embryogenesis. Such a
comparison would begin to address the long-standing
question of whether regeneration is simply a recapit-
ulation of development or whether it is made possible
by independent mechanistic innovations. How, for
instance, are embryonic stem cells functionally differ-
ent from neoblasts? How and when are neoblasts spec-
ified during embryogenesis? Is the same genetic toolkit
required during embryogenesis to organize the body
axes and facilitate organogenesis as it is during regen-
eration? This comparison may provide vital insights
into a particularly curious phenomenon. Specifically,
a variety of organisms display an impressive ability
to undergo regulative embryonic development. Ani-
mals like the mouse, fruit fly, and frog can recover
from ablation of numerous blastomeres or substantial
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injury to embryonic organs. However, these ani-
mals display limited regenerative capacities as adults.
Understanding whether regulative development hap-
pens in planarian embryos and how it might differ
from these other organisms may help us identify key
differences crucial to preserving regenerative abilities
into adulthood.

Finally, one of the ultimate goals of studying
planarian regeneration is to understand why some
animals regenerate robustly while others—such as
humans—do not. Comparing the mechanisms of adult
regeneration in diverse animals that have varying
abilities to regenerate may be another way of pin-
pointing the core requirements for regeneration. Such
an approach may also provide insights into the permu-
tations that evolution has enacted upon this biological
process over time. The first step in this endeavor
should be to compare different planarian species,
some of which regenerate robustly, while others dis-
play more limited abilities depending upon the plane

of amputation. Elegant irradiation and grafting exper-
iments performed on Procotyla fluviatilis, which does
not regenerate robustly after post-pharyngeal amputa-
tion, suggest that variation in regenerative ability may
result from the signals provided by the differentiated
tissues,189,248–250 and may not be explained simply by
total numbers of neoblasts, as first thought.208 Revis-
iting these classical studies with modern tools may
help us identify a core set of molecular and physical
principles guiding regeneration, which could then be
examined in more distantly related animal species.

With a rich history and giant leaps forward in
recent years, the future of the planarian field is bright.
Our mechanistic view of regeneration will undoubt-
edly come into much greater focus as more techniques
are developed and more investigators pursue questions
in this classical model system. It will be exciting to see
what biological insights these animals will reveal to us
next.
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79. Abril JF, Cebrià F, Rodríguez-Esteban G, Horn T,
Fraguas S, Calvo B, Bartscherer K, Saló E. Smed454
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régénération. Exper Cell Res 1961, 8:246–259.

191. Fedecka-Bruner B, Kiortsis V, Trampusch HAL.
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215. Baguñà J. Mitosis in the intact and regenerating pla-
narian Dugesia mediterranea n.sp. I. Mitotic studies
during growth, feeding and starvation. J Exper Zoöl
1975, 195:53–64.
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dans la régénération de planaires paludicoles. Ann des
Sc Nat, Zool 1956, 18:223–230.

222. Azimzadeh J, Wong ML, Downhour DM, Sánchez
Alvarado A, Marshall WF. Centrosome loss in the
evolution of planarians. Science 2012, 335:461–463.

223. Palakodeti D, Smielewska M, Lu YC, Yeo GW, Grave-
ley BR. The PIWI proteins SMEDWI-2 and SMEDWI-
3 are required for stem cell function and piRNA
expression in planarians. RNA 2008, 14:1174–1186.

224. Oviedo NJ, Pearson BJ, Levin M, Sánchez Alvarado
A. Planarian PTEN homologs regulate stem cells and
regeneration through TOR signaling. Disease Models
Mech 2008, 1:131–143.

225. Solana J, Lasko P, Romero R. Spoltud-1 is a chroma-
toid body component required for planarian long-term
stem cell self-renewal. Dev Biol 2009, 328:410–421.

226. Conte M, Deri P, Isolani ME, Mannini L, Batistoni R.
A mortalin-like gene is crucial for planarian stem cell
viability. Dev Biol 2009, 334:109–118.

227. Pearson BJ, Sánchez Alvarado A. A planarian p53
homolog regulates proliferation and self-renewal
in adult stem cell lineages. Development 2010,
137:213–221.

228. Bonuccelli L, Rossi L, Lena A, Scarcelli V, Rainaldi
G, Evangelista M, Iacopetti P, Gremigni V, Salvetti
A. An RbAp48-like gene regulates adult stem cells in
planarians. J Cell Sci 2010, 123:690–698.

229. Scimone ML, Meisel J, Reddien PW. The Mi-2-like
Smed-CHD4 gene is required for stem cell differ-
entiation in the planarian Schmidtea mediterranea.
Development 2010, 137:1231–1241.

© 2012 Wiley Per iodica ls, Inc.



Advanced Review wires.wiley.com/devbio

230. Fernández-Taboada E, Moritz S, Zeuschner
D, Stehling M, Scholer HR, Saló E, Gentile L. Smed-
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différenciation des cellules de régénération chez la
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